Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Plant Biol ; 5: e2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572078

RESUMO

Quantitative analyses and models are required to connect a plant's cellular organisation with its metabolism. However, quantitative data are often scattered over multiple studies, and finding such data and converting them into useful information is time-consuming. Consequently, there is a need to centralise the available data and to highlight the remaining knowledge gaps. Here, we present a step-by-step approach to manually extract quantitative data from various information sources, and to unify the data format. First, data from Arabidopsis leaf were collated, checked for consistency and correctness and curated by cross-checking sources. Second, quantitative data were combined by applying calculation rules. They were then integrated into a unique comprehensive, referenced, modifiable and reusable data compendium representing an Arabidopsis reference leaf. This atlas contains the metrics of the 15 cell types found in leaves at the cellular and subcellular levels.

2.
Trends Plant Sci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570279

RESUMO

Soil calcium carbonate (CaCO3) impacts plant mineral nutrition far beyond Fe metabolism, imposing constraints for crop growth and quality in calcareous agrosystems. Our knowledge on plant strategies to tolerate CaCO3 effects mainly refers to Fe acquisition. This review provides an update on plant cellular and molecular mechanisms recently described to counteract the negative effects of CaCO3 in soils, as well as recent efforts to identify genetic bases involved in CaCO3 tolerance from natural populations, that could be exploited to breed CaCO3-tolerant crops. Finally, we review the impact of environmental factors (soil water content, air CO2, and temperature) affecting soil CaCO3 equilibrium and plant tolerance to calcareous soils, and we propose strategies for improvement in the context of climate change.

3.
J Exp Bot ; 74(17): 5374-5393, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37326591

RESUMO

Ectopic expression of defensins in plants correlates with their increased capacity to withstand abiotic and biotic stresses. This applies to Arabidopsis thaliana, where some of the seven members of the PLANT DEFENSIN 1 family (AtPDF1) are recognised to improve plant responses to necrotrophic pathogens and increase seedling tolerance to excess zinc (Zn). However, few studies have explored the effects of decreased endogenous defensin expression on these stress responses. Here, we carried out an extensive physiological and biochemical comparative characterization of (i) novel artificial microRNA (amiRNA) lines silenced for the five most similar AtPDF1s, and (ii) a double null mutant for the two most distant AtPDF1s. Silencing of five AtPDF1 genes was specifically associated with increased aboveground dry mass production in mature plants under excess Zn conditions, and with increased plant tolerance to different pathogens - a fungus, an oomycete and a bacterium, while the double mutant behaved similarly to the wild type. These unexpected results challenge the current paradigm describing the role of PDFs in plant stress responses. Additional roles of endogenous plant defensins are discussed, opening new perspectives for their functions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse Fisiológico/genética , Zinco/metabolismo , Defensinas/genética , Defensinas/metabolismo , Defensinas/farmacologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética
4.
Evol Appl ; 16(4): 772-780, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124083

RESUMO

Plant-herbivore interactions mediated by plant-plant signalling have been documented in different species but its within-species variability has hardly been quantified. Here, we tested if herbivore foraging activity on plants was influenced by a prior contact with a damaged plant and if the effect of such plant-plant signalling was variable across 113 natural genotypes of Arabidopsis thaliana. We filmed the activity of the generalist herbivore Cornu aspersum during 1 h on two plants differing only in a prior contact with a damaged plant or not. We recorded each snails' first choice, and measured its first duration on a plant, the proportion of time spent on both plants and leaf consumption. Overall, plant-plant signalling modified the foraging activity of herbivores in A. thaliana. On average, snails spent more time and consumed more of plants that experienced a prior contact with a damaged plant. However, the effects of plant-plant signalling on snail behaviour was variable: depending on genotype identity, plant-plant signalling made undamaged plants more repellant or attractive to snails. Genome-wide associations revealed that genes related to stress coping ability and jasmonate pathway were associated to this variation. Together, our findings highlight the adaptive significance of plant-plant signalling for plant-herbivore interactions.

5.
Sci Data ; 10(1): 314, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225767

RESUMO

Data from functional trait databases have been increasingly used to address questions related to plant diversity and trait-environment relationships. However, such databases provide intraspecific data that combine individual records obtained from distinct populations at different sites and, hence, environmental conditions. This prevents distinguishing sources of variation (e.g., genetic-based variation vs. phenotypic plasticity), a necessary condition to test for adaptive processes and other determinants of plant phenotypic diversity. Consequently, individual traits measured under common growing conditions and encompassing within-species variation across the occupied geographic range have the potential to leverage trait databases with valuable data for functional and evolutionary ecology. Here, we recorded 16 functional traits and leaf hyperspectral reflectance (NIRS) data for 721 widely distributed Arabidopsis thaliana natural accessions grown in a common garden experiment. These data records, together with meteorological variables obtained during the experiment, were assembled to create the AraDiv dataset. AraDiv is a comprehensive dataset of A. thaliana's intraspecific variability that can be explored to address questions at the interface of genetics and ecology.


Assuntos
Arabidopsis , Adaptação Fisiológica , Arabidopsis/genética , Evolução Biológica , Bases de Dados Factuais , Folhas de Planta
6.
Genetica ; 150(3-4): 161-169, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35857239

RESUMO

Phenotypic integration is a concept related to the cascade of trait relationships from the lowest organizational levels, i.e. genes, to the highest, i.e. whole-organism traits. However, the cause-and-effect linkages between traits are notoriously difficult to determine. In particular, we still lack a mathematical framework to model the relationships involved in the integration of phenotypic traits. Here, we argue that allometric models developed in ecology offer testable mathematical equations of trait relationships across scales. We first show that allometric relationships are pervasive in biology at different organizational scales and in different taxa. We then present mechanistic models that explain the origin of allometric relationships. In addition, we emphasized that recent studies showed that natural variation does exist for allometric parameters, suggesting a role for genetic variability, selection and evolution. Consequently, we advocate that it is time to examine the genetic determinism of allometries, as well as to question in more detail the role of genome size in subsequent scaling relationships. More broadly, a possible-but so far neglected-solution to understand phenotypic integration is to examine allometric relationships at different organizational levels (cell, tissue, organ, organism) and in contrasted species.


Assuntos
Fenótipo , Tamanho Corporal
7.
Front Plant Sci ; 13: 836488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668791

RESUMO

The trait-based approach in plant ecology aims at understanding and classifying the diversity of ecological strategies by comparing plant morphology and physiology across organisms. The major drawback of the approach is that the time and financial cost of measuring the traits on many individuals and environments can be prohibitive. We show that combining near-infrared spectroscopy (NIRS) with deep learning resolves this limitation by quickly, non-destructively, and accurately measuring a suite of traits, including plant morphology, chemistry, and metabolism. Such an approach also allows to position plants within the well-known CSR triangle that depicts the diversity of plant ecological strategies. The processing of NIRS through deep learning identifies the effect of growth conditions on trait values, an issue that plagues traditional statistical approaches. Together, the coupling of NIRS and deep learning is a promising high-throughput approach to capture a range of ecological information on plant diversity and functioning and can accelerate the creation of extensive trait databases.

8.
Environ Pollut ; 304: 119138, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35307494

RESUMO

Anthropogenic pollution is a major driver of global environmental change. To be properly addressed, the study of the impact of pollutants must consider both lethal effects and sublethal effects on individual fitness. However, measuring fitness remains challenging. In plants, the total number of seeds produced, i.e. the seed set, is traditionally considered, but is not readily accessible. Instead, performance traits related to survival, e.g., vegetative biomass and reproductive success, can be measured, but their correlation with seed set has rarely been investigated. To develop accurate estimates of seed set, relationships among 15 vegetative and reproductive traits were analyzed. For this purpose, Noccaea caerulescens (Brassicaceae), a model plant to study local adaptation to metal-contaminated environments, was used. To investigate putative variation in trait relationships, sampling included several accessions cultivated in contrasting experimental conditions. To test their applicability, selected estimates were used in the first generation of a Laboratory Natural Selection (LNS) experiment exposing experimentally plants to zinc soil pollution. Principal component analyses revealed statistical independence between vegetative and reproductive traits. Traits showing the strongest positive correlation with seed set were the number of non-aborted silicles, and the product of this number and mean silicle length. They thus appeared the most appropriate to document sublethal or fitness effects of environmental contaminants in plant ecotoxicological studies. The relevance of both estimates was confirmed by using them to assess the fitness of parental plants of the first generation of an LNS experiment: the same families consistently displayed the highest or the lowest performance values in two independent experimental metal-exposed populations. Thus, both these fitness estimates could be used to determine the expected number of offspring and the composition of successive generations in further LNS experiments investigating the impact of multi-generational exposure of a plant species to environmental pollution.


Assuntos
Brassicaceae , Biomassa , Poluição Ambiental , Humanos , Metais/toxicidade , Sementes , Zinco
10.
Ann Bot ; 129(3): 343-356, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34918027

RESUMO

BACKGROUND AND AIMS: Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species' ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies from the CSR scheme and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. METHODS: We experimentally examined the phenotypic outcomes of plant adaptation at the center and margins of its geographic range using 30 accessions from southern, central and northern Europe. We characterized the variation of traits related to stress tolerance, resource use, colonization ability, CSR strategy scores, survival and fecundity in response to high temperature (34 °C) or frost (- 6 °C), combined with a water deficit treatment. KEY RESULTS: We found evidence for both a latitudinal and a center-margins differentiation for the traits under scrutiny. Age at maturity, leaf dry matter content, specific leaf area and leaf nitrogen content varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Leaf area, C-scores, R-scores and fruit number followed a center-margins differentiation. Central accessions displayed a higher phenotypic plasticity than northern and southern accessions for most studied traits. CONCLUSIONS: Traits related to an acquisitive/conservative resource-use trade-off followed a latitudinal gradient. Traits associated with a competition/colonization trade-off differentiated along the historic colonization of the distribution range and then followed a center-margins differentiation. Our findings pinpoint the need to consider the joint effect of evolutionary history and environmental factors when examining phenotypic variation across the distribution range of a species.


Assuntos
Arabidopsis , Aclimatação , Adaptação Fisiológica , Arabidopsis/genética , Nitrogênio , Fenótipo
11.
BMC Genomics ; 22(1): 893, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906091

RESUMO

BACKGROUND: Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a large plant-specific gene family involved in regulating development, senescence, and responses to biotic and abiotic stresses. The main goal of this work was to identify sunflower NAC TF (HaNAC) and their association with senescence, studying their orthologous to understand possible functional relationships between genes of different species. RESULTS: To clarify the orthologous relationships, we used an in-depth comparative study of four divergent taxa, in dicots and monocots, with completely sequenced genomes (Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa). These orthologous groups provide a curated resource for large scale protein sequence annotation of NAC TF. From the 151 HaNAC genes detected in the latest version of the sunflower genome, 50 genes were associated with senescence traits. These genes showed significant differential expression in two contrasting lines according to an RNAseq assay. An assessment of overexpressing the Arabidopsis line for HaNAC001 (a gene of the same orthologous group of Arabidopsis thaliana ORE1) revealed that this line displayed a significantly higher number of senescent leaves and a pronounced change in development rate. CONCLUSIONS: This finding suggests HaNAC001 as an interesting candidate to explore the molecular regulation of senescence in sunflower.


Assuntos
Helianthus , Proteínas de Plantas , Senescência Vegetal , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescência Vegetal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Sci Rep ; 11(1): 24103, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916537

RESUMO

Changes in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/virologia , Caulimovirus/patogenicidade , Mudança Climática , Doenças das Plantas/virologia , Estresse Fisiológico , Virulência , Água , Animais , Afídeos/fisiologia , Afídeos/virologia , Arabidopsis/parasitologia , Meio Ambiente
13.
Sci Rep ; 11(1): 20361, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645880

RESUMO

Expansion of crops beyond their centres of domestication is a defining feature of the Anthropocene Epoch. This process has fundamentally altered the diversity of croplands, with likely consequences for the ecological functioning and socio-economic stability of agriculture under environmental change. While changes in crop diversity through the Anthropocene have been quantified at large spatial scales, the patterns, drivers, and consequences of change in crop diversity and biogeography at national-scales remains less explored. We use production data on 339 crops, grown in over 150 countries from 1961 to 2017, to quantify changes in country-level crop richness and evenness. Virtually all countries globally have experienced significant increases in crop richness since 1961, with the early 1980s marking a clear onset of a ~ 9-year period of increase in crop richness in countries worldwide. While these changes have increased the similarity of diversity of croplands among countries, only half of countries experienced increases in crop evenness through time. Ubiquitous increases in crop richness within nearly all countries between 1980 and 2000 are a unique biogeographical feature of the Anthropocene. At the same time, we detected opposing changes in crop evenness, and only modest signatures of increased homogenization of croplands among countries. Therefore context-dependent and, at least, national-scale assessments are needed to understand and predict how changes in crop diversity influence agricultural resistance and resilience to environmental change.

14.
Front Plant Sci ; 12: 636915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868335

RESUMO

Crop diversity management in agriculture is a fundamental principle of agroecology and a powerful way to promote resilient and sustainable production systems. Pulses are especially relevant for diversification issues. Yet, the specific diversity of legumes is poorly represented in most cropping systems. We used the trait-based approach to quantify the functional diversity of 30 pulses varieties, belonging to 10 species, grown under common field conditions. Our aim was to test relationships between traits, yield, and supporting agroecosystem properties. Our experimental results highlighted trade-offs between agroecosystem properties supported by different combinations of traits. Also, results demonstrated the relevance of leaf nitrogen content (LNC), leaf area ratio (LAR), and reproductive phenology to predict most of the trade-offs observed between agroecosystem properties. A comparison with a previous analysis based on literature data collected in diverse agronomic situations suggested that some traits are more plastic than others and therefore contribute differently to frame legumes diversity depending on the conditions of observation. Present results suggested that the implementation of such trait-based approach would rapidly benefit the selection of species/varieties for specific targeted agroecosystem services provisioning under specific (environmental or management) conditions.

15.
Physiol Plant ; 172(2): 477-486, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33002192

RESUMO

The genus Vigna (Fabaceae) is an agriculturally important taxon, which includes several crop species such as cowpea (Vigna unguiculata L.), mung bean (Vigna radiata) and azuki bean (Vigna angularis). Most studies have focused on cowpea (V. unguiculata (L.) as a drought-resistant crop, although insights on the mechanisms that confer this species the ability to grow in dry environment are still not fully resolved. The diversity of this rich genus has been overlooked in many physiological studies. This study explores the physiological mechanisms of response to soil drying (N2 fixation, transpiration rate and changes in C and N allocation) across three species of the Vigna genus: V. radiata, V. unguiculata, V. vexillata (tuber cowpea). A significant variability among the studied Vigna accessions was found for the threshold in decline of N2 fixation with soil drying. Less variability was observed in the transpiration threshold. Through the analysis of leaf traits variation under well-watered and water-deficit conditions, we were able to relate the variability in N2 fixation and transpiration response to C/N metabolism modifications resulting in different allocation of carbon and nitrogen to leaves under water deficit.


Assuntos
Fabaceae , Vigna , Secas , Folhas de Planta , Solo
16.
Sci Rep ; 10(1): 12234, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699344

RESUMO

Despite the large morphological and physiological changes that plants have undergone through domestication, little is known about their impact on their microbiome. Here we characterized rhizospheric bacterial and fungal communities as well as the abundance of N-cycling microbial guilds across thirty-nine accessions of tetraploid wheat, Triticum turgidum, from four domestication groups ranging from the wild subspecies to the semi dwarf elite cultivars. We identified several microbial phylotypes displaying significant variation in their relative abundance depending on the wheat domestication group with a stronger impact of domestication on fungi. The relative abundance of potential fungal plant pathogens belonging to the Sordariomycetes class decreased in domesticated compared to wild emmer while the opposite was found for members of the Glomeromycetes, which are obligate plant symbionts. The depletion of nitrifiers and of arbuscular mycorrhizal fungi in elite wheat cultivars compared to primitive domesticated forms suggests that the Green Revolution has decreased the coupling between plant and rhizosphere microbes that are potentially important for plant nutrient availability. Both plant diameter and fine root percentage exhibited the highest number of associations with microbial taxa, highlighting their putative role in shaping the rhizosphere microbiota during domestication. Aside from domestication, significant variation of bacterial and fungal community composition was found among accessions within each domestication group. In particular, the relative abundances of Ophiostomataceae and of Rhizobiales were strongly dependent on the host accession, with heritability estimates of ~ 27% and ~ 25%, indicating that there might be room for genetic improvement via introgression of ancestral plant rhizosphere-beneficial microbe associations.


Assuntos
Bactérias/genética , Domesticação , Microbiota/genética , Micobioma/genética , Micorrizas/genética , Raízes de Plantas/microbiologia , Triticum/microbiologia , Genótipo , Fenótipo , Rizosfera , Microbiologia do Solo , Tetraploidia
17.
PLoS Pathog ; 16(5): e1008557, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413076

RESUMO

Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.


Assuntos
Arabidopsis , Caulimovirus , Variação Genética , Genótipo , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/virologia , Desidratação/genética , Desidratação/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia
18.
Sci Rep ; 10(1): 3416, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098982

RESUMO

Pulses, defined as legumes which produce dry seed used for human consumption, are plants of great agronomic value, at the food system level as much as the field level but their diversity has been largely underused. This study aimed at analyzing existing data on cultivated pulse species in the literature to provide a broad and structured description of pulses' interspecific functional diversity. We used a functional trait-based approach to evaluate how pulse diversity could support food production in agroecosystems constrained by low water and nutrient availability and exposed to high weed pressure. We gathered data for 17 functional traits and six agroecosystem properties for 43 pulse species. Our analytical framework highlights the correlations and combinations of functional traits that best predict values of six agroecosystem properties defined as ecosystem services estimates. We show that pulse diversity has been structured both by breeding and by an environmental gradient. The covariance space corresponding to agroecosystem properties was structured by three properties: producers, competitors, stress-tolerant species. The distribution of crop species in this functional space reflected ecological adaptive strategies described in wild species, where the size-related axis of variation is separated from variation of leaf morpho-physiological traits. Six agroecosystem properties were predicted by different combinations of traits. However, we identified ubiquitous plant traits such as leaflet length, days to maturity, seed weight, and leaf nitrogen content, that discriminated agroecosystem properties and allowed us to gather individual species into three clusters, representative of the three strategies highlighted earlier. Implications for pulses provisioning of services in agroecosystems are discussed.


Assuntos
Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Modelos Biológicos
19.
Sci Rep ; 9(1): 10758, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341185

RESUMO

Life history strategies of most organisms are constrained by resource allocation patterns that follow a 'slow-fast continuum'. It opposes slow growing and long-lived organisms with late investment in reproduction to those that grow faster, have earlier and larger reproductive effort and a short longevity. In plants, the Leaf Economics Spectrum (LES) depicts a leaf-level trade-off between the rate of carbon assimilation and leaf lifespan, as stressed in functional ecology from interspecific comparative studies. However, it is still unclear how the LES is connected to the slow-fast syndrome. Interspecific comparisons also impede a deep exploration of the linkage between LES variation and adaptation to climate. Here, we measured growth, morpho-physiological and life-history traits, at both the leaf and whole-plant levels, in 378 natural accessions of Arabidopsis thaliana. We found that the LES is tightly linked to variation in whole-plant functioning, and aligns with the slow-fast continuum. A genetic analysis further suggested that phenotypic differentiation results from the selection of different slow-fast strategies in contrasted climates. Slow growing and long-lived plants were preferentially found in cold and arid habitats while fast growing and short-lived ones in more favorable habitats. Our findings shed light on the role of the slow-fast continuum for plant adaptation to climate. More broadly, they encourage future studies to bridge functional ecology, genetics and evolutionary biology to improve our understanding of plant adaptation to environmental changes.


Assuntos
Arabidopsis/fisiologia , Folhas de Planta/fisiologia , Arabidopsis/crescimento & desenvolvimento , Ecologia , Geografia , Folhas de Planta/crescimento & desenvolvimento , Fenômenos Fisiológicos Vegetais
20.
New Phytol ; 224(4): 1532-1543, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31179544

RESUMO

Although interspecific variation in plant phenotype is recognised to impact afterlife processes such as litter decomposability, it is still unclear which traits and selection pressures explain these relationships. Examining intraspecific variation is crucial to identify and compare trait effects on decomposability, and investigate the potential role of natural selection. We studied the genetic variability and relationships between decomposability, plant traits typically related to decomposability at species level (morphophysiological traits), and leaf metabolites among a set of genotypes of Arabidopsis thaliana grown under controlled conditions. We also investigated correlations between decomposability and environmental variables at genotypes collection site. We investigated the genetic architecture of decomposability with genome-wide association studies (GWAS). There was large genetic variability in decomposability that was correlated with precipitation. Morphophysiological traits had a minor effect, while secondary metabolites, especially glucosinolates, were correlated with decomposability. Consistently, GWAS suggested that genes and metabolites related to the composition of cell membranes and envelopes control the variation of decomposability across genotypes. Our study suggests that decomposability varies within species as a result of metabolic adaptation to climate. Our findings highlight that subtle variations of defence-related metabolites like glucosinolates may strongly influence after-life processes such as decomposability.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Folhas de Planta/fisiologia , Clima , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...